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The Differential Method in Chemical Kinetics 

Jose M. Leal * and Pedro L. Doming0 
Universidad de Valladolid, Departamento de Quimica Fisica, Colegio Universitario lntegrado, 0900 I Burgos, 
Spain 

This paper discusses the application to  kinetic data of direct methods of reduction, in an attempt to  
develop the capacity of differential kinetic equations. The differential method is very often relegated 
by the integral method in the treatment of kinetic data. Several methods are described for the 
obtention of reaction rates with a small margin of error at every kinetic reading; the interpolating 
spline function is applied and a piece-wise interpolating method with overlapping intervals is 
suggested. These methods have been applied to  several reactions with satisfactory results, showing 
the usefulness of the differential method for the determination of orders of reaction and rate 
constants. 

The processing of kinetic data with differential methods' is 
usually based on rate equation (1) where A stands for the 

control species, Ci for the concentration of reactants or 
products, and aj  for different kinetic parameters of the reacting 
system. A kinetic run is usually followed by the variation with 
time of a physical or chemical property h which is dependent on 
the concentration of the control species, equation (2); as being 

the corresponding parameter; for completion reactions g(h, 
as). = p(h - Am), where p is a constant. The rate law may be 
written as follows, in terms of the property [equations (3) and 
(411: 

dCA/dt = g'(h, a,)(dh/dt) (3) 

where 

rs = dh/dt = F(Ci, aj, as,. . .) (4) 

Thus, the rate law may be written in terms of the variation 
with time of the property measured. The reaction rates can be 
obtained2 from the tangents at different times to the plot h/t; 
these tangents may be calculated either with the limit secant 
m e t h ~ d , ~  or using optical instruments, as shown in the mirror 

the same aim may be achieved with a simple prism,6 
or with certain mechanical  device^,^ but these procedures 
appear little in the literature. The method of finite differences 
converts the differentials into increments' equation (5), and is 

not interesting even if the time intervals are regularly spaced, 
since this approximation is too drastic. 

The purpose of this work is the obtention of the rates rs before 
the introduction of any assumptions regarding the rate law or 
the reaction mechanism; this is the reason for rejecting 
differential methods based on the approximation of the 
derivative by numerical differentiation of kinetic readings, such 
as the Runge-Kutta method or predictor-corrector, etcg The 
idea consists of fitting the kinetic readings to a mathematical 
function and obtaining the reaction rates by derivation; the h/t 

trajectories are usually transcendental functions of time, so that 
an approximation to low degree polynomials by least-squares 
yields poor results. The unique way of achieving good results by 
minimizing the sum of deviations is to discover the function F 
and integrate this in order to obtain h = f (t), but this process 
would not be useful, since it is equivalent to solving the problem 
with the integral method before calculating the rates that enable 
the differential method to be used. 

Interpolation is another method of fitting curves. Newton's 
interpolating polynomial, more sophisticated than those of 
Neville and Lagrange," is of degree one unit lower than the 
number of data points and passes through all the points; it is 
difficult to construct if many points are used and the error of 
interpolation is lower the lower the degree of the polynomial; it 
was applied in chemical kinetics to the extrapolant formulation 
of the backward differentiation method for the numerical 
integration of stiff ordinary differential equations.' ' In the 
present work this method is shown to be capable of giving 
accurate results if the kinetic readings are regularly spaced, but 
in some cases leads to Legendre curves of the family points if the 
timing is not regular enough. 

The piece-wise interpolation gives a better design of the curve; 
in order to interpolate the function defined in the interval (tl, t,), 
this is divided into several subintervals, in each of which a 
different interpolant is applied. The spline function approxim- 
ation l 2 , I 3  of order rn has these features and is defined from the 
partition p: t l  < . . . ti < . . . < t,, as an application s(t) of ( t l ,  
t,) over R (basis set of real numbers) that, restricted to the 
subinterval (t i ,  t i + ' )  with i = 1, 2, . . . n - 1, becomes a 
polynomial Pi(?)  d rn. The spline function most commonly 
used is the cubic spline (rn = 3), a vector of n + 2 dimensions of 
the vectorial space; to be able to determine the spline vector, the 
interpolating spline with two boundary conditions is included in 
the data processing, since there exist only n interpolation 
conditions (kinetic readings). The cubic spline function is 
introduced in chemical kinetics with the aim of improving and 
extending the range of application of Hilmmelbrau's method of 
direct integrati~n.'~,' ' This work underlines the important role 
of the cubic spline function for improving the differential 
methods, very often relegated by the integral method; also, a 
new type of piece-wise interpolation with overlapping time 
intervals is suggested, which eliminates the need for boundary 
conditions. 

Obtention of Reaction Rates with the Cubic Spline Function.- 
The theory of divided differences enables the obtention of the 
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r51 r A ~  

r 1 2  dl 
r1a d2 

r5-1 4 - 2  

x rA4 = d3 (8) 
..... ..... 

Table 1. Results of reaction rates -dh/dz obtained from simulated data 
of a first order reaction, h = h,exp(-kt), according to different 
methods'; 31, = 1; k = 0.01 min-'. 

0 0 0 0  0 1 r A" 

Actual First Second Natural 
t/min h rate Overinter spline spline spline 

r71. 

1 0.990 
10 0.905 
20 0.819 
30 0.741 
40 0.670 
50 0.606 
60 0.549 
70 0.496 
80 0.449 
90 0.406 

9.900 
9.050 
8.190 
7.410 
6.700 
6.060 
5.490 
4.960 
4.490 
4.060 

9.803 
9.046 
8.150 
7.450 
6.615 
6.065 
5.501 
5.009 
4.510 
4.0 10 

~ ~~ 

9.803 9.835 9.615 
9.050 9.041 9.103 
8.177 8.180 8.163 
7.440 7.439 7.444 
6.762 6.762 6.761 
6.010 6.010 6.011 
5.497 5.495 5.493 
5.001 5.006 5.017 
4.497 4.476 4.438 
4.010 4.087 4.231 

a Results affected by a factor of lo4. 

polynomial Pi(t) corresponding to the subinterval ( t , ,  ti+ 1), as 
equation (6) 

Pi(t )  = hi + ( t  - ti)rAi + ____ - ti)2(Ahi/Ati - rAi) + 
At, 

with i = 1,2, . . . n- 1; At, = ( t i+ , - ti); Ahi = (hi+ , - hi). 
The cubic spline function requires the condition e(ti+ 1) = 

&+,(t i+,) ,  with i = 1,2 . . . n - 2; the two second derivatives 
can be obtained from equation (6) and this allows us to write 
equation (7); where a, = l/Ati, ci = 1/Ati+,, bi = (2ai + 2ci), 

airAi + bJxitl + cirAit2 = di ( i  = 1,2,. . .,n - 2) (7) 

and There 
exist n indeterminates (values of r A  at each experimental point), 
but only n - 2 equations such as equation (7) are available; 
then, two boundary conditions are necessary to solve the 
problem. Depending on the nature of the additional data 
coming from the boundary conditions, the cubic spline 
interpolants classify as follows. 

(a)  Cubic spline with boundary conditions on the$rst derivative 
yirst spline). The additional information comes from the first 
derivative rA at any two of the kinetic readings, the first and last 
being those usually chosen; in this work they were obtained by 
derivation of the polynomials, fitting the first four points to a 
second degree polynomial, and the four last points to another 
polynomial; in this way, the following matrix equation (8) was 

di = [ 3 ~ ? + ~ I h , + ~  - ( 3 ~ ? + ~  - 3aZ)hi+l - 3a?hi]. 

obtained: i.e. C x V = D and, therefore, the reaction rates may 
be obtained as V = C' x D. The matrix of coefficients C is 
calculated using the successive differences between times, 
whereas the column matrix D depends on the successive 
differences between the readings of the property h, and also on 
two of the derivatives. 

x 

~ ~~~~ 

t 
Figure 1. Decomposition of the interval of data points into several 
subintervals according to the overinter method. 

(b)  Cubic spline with boundary conditions on the second 
derivative (second spline). The additional data required are the 
values of the second derivative at any two of the readings, the 
first and last ones being chosen again; two polynomials are 
obtained in a manner similar to that described earlier and h'; 
and h," are determined by derivation; two conditions are 
applied: h; = <(tl) and h," = P,-,(tJ, K( t )  being obtained 
from equation (6). The solution of the matrix equation (9) 
enables the obtention of the reaction rates. 

(c) Natural cubic spline. This is a particular type of the second 
spline, with h'; = h: = 0; it is the most commonly used, since no 
calculation prior to equation (9) is required. 

Obtention of Reaction Rates by Piece-wise Interpolation with 
Overlapped Intervals (Overinter).-The total number of data 
points is distributed over several subintervals of four points 
each; the last interval will consist of three points if the total 
number is an odd number. Each interval overlaps with adjacent 
ones (Figure 1) and is fitted to a second degree polynomial by 
least squares and then P l ( t ) ,  P2(t), . . . are obtained. The rate rA 
is deduced at every point by derivation, in such a way that all the 
subintervals (except the first and last ones) are solely used to 
obtain the derivatives at the two central points. 

Results 
Table 1 contains values of reaction rates obtained according to 
the methods described; these values come from the simulated 
data of a first-order reaction whose actual rates are given, and 
compare satisfactorily; the first spline, second spline and 
overinter methods provide better agreement, although none of 
them could be singled out; the natural spline yields poorer 
results due to the drastic assumption h'; = hz = 0, but it is a 
more manageable method; the overinter method yields better 
results when the subintervals are fitted to a polynomial of 
second degree, and no appreciable improvement was observed 
on increasing each subinterval to more than four points. It is to 
be noted that the initial and final rates are the furthest from the 
actual values and should be rejected as long as sufficient 
readings (> 10) are available. Although the boundary con- 
ditions may be applied to any two points, its application to 
points other than the first and last ones does not improve the 
results. Finally, the same subroutine was always utilized with 
the overinter method, and became ca. 3.3 times faster than spline 
methods. 

A study was also made of the influence that errors inherent to 
readings have on the accuracy of the methods suggested; to do 
this, a random alteration was made of the readings of a 
simulated kinetic run, in the form: hqi = hi + qs(h), where 
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4a 1 2a 1 0 0 0 0 
a 1  61 C1 0 - 0  0 

.................................................. 

.................................................. 
0 0 0 an- 2 bn-2 Cn-2 

0 0 0 0 2a,,-l 4an-1 

X 

Table 2. Determination of reaction orders from data of completion reactions by linear regression of In rl = In K* + n In P. 

(9) 

Data 
(table number) n Overinter First spline Second spline Natural spline 

0.00 
0.50 
1 .00 
1 .00 
2.00 
2.50 
3.00 
4.00 

0.026 f 0.015 
0.499 f 0.003 
0.999 f 0.015 
1.000 f 0.056 
2.133 f 0.091 
2.477 f 0.048 
2.933 f 0.110 
4.138 f 0.203 

0.025 x 0.011 
0.498 f 0.003 
1.000 f 0.012 
0.965 f 0.057 
1.992 f 0.102 
2.502 f 0.022 
2.992 f 0.064 
4.130 f 0.175 

0.031 f 0.020 
0.498 & 0.003 
1.014 f 0.014 
0.960 f 0.057 
1.958 f 0.112 
2.494 f 0.020 
2.972 f 0.051 
4.109 f 0.142 

0.031 f 0.021 
0.503 f 0.003 
0.986 f 0.015 
0.962 f 0.057 
1.970 f 0.111 
2.521 f 0.030 
2.984 f 0.050 
4.147 f 0.165 

0.296 - 

=7 
0.166 - 

t l s  

Figure 2. Absorbance-time curve obtained by application of the first 
spline to the kinetic readings of the oxidation of ascorbic acid by 
ferricyanide (Table 5). 

1 k q k -1 and s(h) is the standard error of the property, 
which is considered to be constant during the kinetic run; 
good results were achieved when s(h) Q 0.005 (h, - A,), hl 
and h ,  being the first and last readings. If s(h) 2 0.005(h1 - 
h,) the overinter method yields best results, since it 
minimizes the squares of deviations, whereas the cubic spline 
function passes through each of the points. In practice only in 
few cases is s(h) k 0.005(h1 - h,) and a complex version of 
the spline function may be utilized using weighted data and 
introducing an additional parameter; the trajectory h/t can be 
softened so that the interpolating polynomial does not need 
to pass through all the points,l6 

Table 2 collects the reaction orders obtained by application of 
the methods described to some completion reactions, some of 
them carried out in our laboratory, so that equation (4) 
becomes equation (10). 

(dh/dt)i = kp"'(hi - A,)" = P ( h  - h,)" = k*P" (10) 

Once the reaction rates from the h/t data have been 
calculated-by means of a non-linear two parametrical 
regression--K* and n can be calculated, h, being a known 
parameter. The rate constant k is deduced from P. Also, a 
weighted linear regression can be used in the form: In rl = In 
K* + n In P. 

Table 3P Oxidation of cysteine by ferricyanide ion in acid medium; 
cysteine = 0.01 mol dm-3, HClO, = 0.05 mol dm-3, K3Fe(CN), = 
0.0005 mol dm-3, K,Fe(CN), = 0.005 mol dm-3, T = 25 "C. 

t l s  A(416 nm) 

3 
7 

11  
15 
19 
23 
27 
31 
33 
35 
37 

0.480 
0.420 
0.364 
0.310 
0.257 
0.204 
0.152 
0.099 
0.073 
0.048 
0.026 

" Ref. 17. 

Discussion 
Although differential rate equations are usually simpler than 
integral equations, the integral method provides better results in 
chemical kinetics if enough kinetic readings of a chemical 
reaction are available, since it operates directly on the kinetic 
readings. The integral method, however, is often difficult to use 
since it requires an additional parameter, which in turn 
derives in a more complicated model. The use of differential 
rate equations is advisable in the case of complex reactions; 
according to equation (lo), if h, is unknown it would be 
much easier to use a non-linear three-parametrical regression; 
under the same circumstances the integral method would 
require four parameters, but a non-linear four-parametrical 
regression might introduce greater problems of convergence 
than a non-linear three-parametrical regression by the 
differential method. On the other hand, it is advisable to use 
the differential method in a first stage and obtain the 
integrated rate law, mainly if insufficient information is 
available concerning the reaction mechanism; then, in the 
light of the corresponding equation and the accuracy of the 
kinetic parameters, an easier decision can be made about the 
best procedure. As an example, Figure 2 shows the design 
corresponding to the interpolant polynomial (6) via first 
spline applied to the kinetic readings of the oxidation of 
ascorbic acid (Table 5 )  by ferricyanide. 

The reactions of bromination of o-xylene (Table 10) and M- 
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Table 4. Kinetic data corresponding to a simulated kinetic run; k =0.01, 
Po = 1 (n = reaction order). 

I P(n = 0.5) P(n = 2.5) r/min PHCL/mmHg 

1 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0.990 
0.902 
0.810 
0.722 
0.640 
0.562 
0.490 
0.422 
0.360 
0.302 

0.990 
0.91 1 
0.839 
0.78 1 
0.73 1 
0.689 
0.652 
0.620 
0.59 1 
0.566 

Table 5." Oxidation of ascorbic acid by ferricyanide ion; ascorbic acid = 
0.01 mol dm-3, HCIO, = 0.2 rnol dm-3, K,Fe(CN), = O.OOO5 rnol 
dm-3, T = 25 "C. 

t / s  A(416 nm) 

65 0.296 
95 0.225 

125 0.171 
155 0.130 
185 0. 100 
215 0.076 
245 0.058 
275 0.045 
305 0.034 
335 0.026 
365 0.020 
395 0.01 6 

" Ref. 17. 

Table 7." Hydrochlorination of cyclohexene catalysed by SnC1,; 
C,Hlo = 0.842 cm3, SnCI, = 0.00673 rnol dm3 ,  T = 20 OC, V670cm3. 

Table 6." Decomposition of ferricyanide ion in acid medium; 
K3Fe(CN), = O.OOO1 mol dm-3, HCIO, = 7 mol dm-3, T = 60 "C. 

t l S  A(416 nm) 

30 0.074 
60 0.062 
90 0.053 

120 0.044 
150 0.037 
180 0.032 
210 0.027 
240 0.023 
270 0.020 
300 0.017 
3 30 0.014 
390 0.010 

a Ref. 17. 

xylene (Table 1 l), follow the rate law given in equation (1 1). 

Obviously, the use of the differential method is in this case 
equivalent to making a simple polynomial fitting. Table 12 
contains the kinetic parameters of equation (1 1) obtained in this 
way; a, is negligible and a ,  and a2 are in good agreement with k ,  
and k2 reported by Neyem21 On the other hand, integration of 
equation (1 1) leads to the less simple equation (12); where a new 

parameter C = In [C&z/(kl + k,C,",,)] is included; thus, the 
differential rate equation requires two parameters, whereas the 
integral equation requires three, which represents an additional 
difficulty. 

0.5 585 
1 544 
1.5 517 
2 477 
2.5 450 
3 425 
3.5 404 
4 385 
5 3 50 
6 323 
7 297 

16 176 
62 57 

" Ref. 18. 

Table 8." Bromination of toluene activated by nitromethane; toluene, 
150 cm3, nitromethane, 100 cm3, T = 17 "C. 

~ ~~ 

f/min [Br,]/mol dm-3 

2.5 0.359 
6 0.320 

13.5 0.268 
23 0.227 
29 0.210 
49 0.1 70 
78 0.141 
90 0.132 

135 0.111 
160 0.102 
200 0.092 

" Ref. 19. 

Table 9." Iodination of rn-xylene in nitromethane SO%, dichloroethane 
40%, acetic anhydride 10%; [rn-C8Hlo] = [ICl] = 0.1078 rnol dm-3, 
T = 17°C. 

t/min [ICl)/mol dm-3 
~ ~~~~ 

0.5 0.0805 
2 0.0574 
3.5 0.0485 
5 0.0438 
7.5 0.0384 

10 0.0349 
14 0.03 12 
17 0.0295 
21 0.0275 
27 0.0253 
38 0.0226 

" Ref. 20. 

Finally, it is worth underlining that better results were 
obtained for kinetic runs in which standard errors of the kinetic 
readings are small and also for those with time intervals 
regularly spaced. At the present time many instruments are 
capable of giving kinetic readings periodically and automatically 
pre-selected, which is interesting for developing the procedures 
described. Although no data are reported here, Newton's 
interpolating polynomial yields very satisfactory results when 
the readings are regularly spaced. 

Experimental 
Reactants-Potassium ferricyanide (Riedel99%), perchloric 

acid (Merck 70%), ascorbic acid (Fluka 99.579, L-cysteine 
(Fluka 9973, potassium ferrocyanide (Riedel 99%) were used 
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Table 10.” Bromination of o-xylene: [IBr] = 0.016 mol dm-3; o-xylene, 
50 cm3; dichloroethane, 50 cm3; T = 17 OC. 

Table 11.” Bromination of m-xylene: [IBr] = 0.0047 mol dm-3; ni- 

xylene, 100 cm3; T = 17 “C. 
~~ 

t/min [BrJmol dm-3 r/min [Br,]/mol dm-3 

Ref. 21. 

0 0.2410 
3 0.2020 
6 0.1715 
8 0.1540 

12 0.1250 
17 0.0990 
21 0.0830 
25 0.0690 
30 0.0555 
37 0.0410 
43 0.0320 

“ Ref. 21. 

0 0.2550 
3 0.21 50 
8 0.1670 

11 0.1450 
14 0.1280 
18 0.1090 
21 0.0975 
24 0.0880 
27 0.0795 
29 0.0745 
33 0.0655 
41 0.05 10 

Table 12. Parameters of the polynomial regression -dC,Jdt = a, + alCBr2 + u2Cir2 corresponding to equation (1 1). 
~~ ~~~~ ~~ ~ 

Overinter First spline Second spline Natural spline 

Table 10 a. 
a1 

a2 
r 

a1 

a2 
R” 

Table 1 1 a0 

0.000 05 f 0.000 16 
0.035 04 & 0.003 94 
0.107 18 0.021 08 
0.9987 
O.OO0 05 k O.OO0 15 
0.017 94 f 0.003 36 
0.176 68 f 0.018 40 
0.9982 

0.000 05 f 0.000 13 
0.035 39 & 0.003 12 
0.112 09 & 0.016 65 
0.9992 
0.000 04 * o.OO0 10 
0.017 84 _+ 0.002 11 
0.182 64 k 0.011 65 
0.9993 

0.00005 k 0.000 12 
0.035 47 k 0.003 11 
0.109 77 0.016 60 
0.9992 
0.00004 f o.Ooo09 
0.017 81 k 0.002 08 
0.182 87 f 0.01 1 45 
0.9993 

O.OO0 05 k O.OO0 12 
0.035 02 & 0.002 88 
0.1 14 09 _+ 0.015 39 
0.9993 
O.OO0 05 f O.OO0 12 
0.016 62 f 0.002 66 
0.192 89 k 0.014 63 
0.9989 

“ R = multiple correlation coefficient. 

without further purification; acid concentrations were calcu- 
lated directly from molar concentrations of perchloric acid, 
since this species is fully ionized up to 70%. All solutions were 
prepared with twice distilled water as the solvent, over which 
nitrogen gas was made to flow before being used. In every 
case the solutions used were freshly prepared and kept out of 
the light. 

Equipment.-The UV-VIS spectral curves were recorded with 
a Bodenseewerk Perkin-Elmer 554 Spectrophotometer with a 
double beam system, 1 nm slit, and a temperature-regulated cell 
holder adapter for 1 cm cells. Circulating water (P-Selecta 
Circulator) maintained the holder temperature constant to 
- +0.01 “C. The reference cell contained the same solvent as the 
sample under measurement. The kinetics of decomposition of 
ferricyanide, as well as the oxidation of L-cysteine and ascorbic 
acid by ferricyanide were followed with a Phillips Pye Unicam 
8 600 spectrophotometer, furnished with a Pye Unicam cell 
temperature controller. The processing of data according to 
the methods described was carried out with computer; the 
program used is available on request. Battle’s R N L ~  program 22 

was used when fitting the data points to a non-linear three 
parametrical regression. 

Appendix 
The need for good techniques for the approximation of 
functions arises in many settings; one of these is the numerical 
solution of differential rate equations in chemical kinetics. 
Spline functions constitute a relatively new subject in the 
analysis of kinetic data; during the last decade both the theory of 
splines and applications to the numerical analysis of data points 
have developed to a considerable degree. A cubic spline function 
is a piece-wise cubic polynomial twice continuously differenti- 
able, and arises when trying to improve the piece-wise cubic 

Lagrange interpolating polynomial. On the other hand, the 
divided differences constitute a quite simple method for the 
computation of Lagrange polynomials and was used to build up 
the interpolating polynomial defined by equation (6),  by adding 
the interpolation points one at a time. 

The specific objective of much of the developments of splines 
is the fitting of a curve, providing the curve to be fitted satisfies 
the continuity conditions required. A detailed description of the 
concepts and methods used can be taken from refs. 12, 13, 23, 
and 24. 
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